Prediction of customer’s perception in social networks by integrating sentiment analysis and machine learning

نویسندگان

چکیده

Abstract Understanding the customer behavior and perception are important issues for motivating satisfaction in marketing analysis. Customer conversation with support services through social networks channel provides a wealth of information understanding perception. Therefore, this paper, hybrid framework that integrated sentiment analysis machine learning techniques is developed to analyze interactive conversations among customers service providers order identify change polarity such conversation. This aims detect switch as well predict end provider. would help companies improve enhance engagement. The effectiveness proposed measured by extracting real dataset expresses more than 5000 conversational threads between agent an online retail provider (AmazonHelp) different using retailer’s twitter public account duration one month. Different classical ensemble classifiers were applied, results showed decision trees outperformed all other techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sentiment Analysis in Czech Social Media Using Supervised Machine Learning

This article provides an in-depth research of machine learning methods for sentiment analysis of Czech social media. Whereas in English, Chinese, or Spanish this field has a long history and evaluation datasets for various domains are widely available, in case of Czech language there has not yet been any systematical research conducted. We tackle this issue and establish a common ground for fur...

متن کامل

the role of type-d personality, social support and self-compassion in prediction of health behaviors in coronary heart disease patients

نظر به اهمیت و تاثیر روزافزون عوامل روانی – اجتماعی در سلامت جسمی و تاثیر عوامل روان شناختی در بروز بیماریهای مختلف از جمله بیماریهای قلبی و عروقی این پژوهش با هدف کلی بررسی ارتباط تیپ شخصیتی d ، حمایت اجتماعی و خود دلسوزی در پیش بینی رفتارهای بهداشتی بیماران کرونر قلبی و تعیین تفاوت بین بیماران کرونر قلبی با و بدون جراحی و افراد سالم در این متغیرها و رفتارهای بهداشتی آنان، انجام گرفت. جامعه آ...

15 صفحه اول

individual qualities and integrative motivation and their prediction of non-linguistic outcomes of learning english in intermediate iranian students: a psychological perspective

abstract this study investigated the predictability of variables from a motivational framework as well as individuals qualities to predict three non-linguistic outcomes of language learning. gardners socio-educational model with its measures has been used in the current study. individual qualities presented in this study include (1) age, (2) gender, and (3) language learning experience. the...

Trust Classification in Social Networks Using Combined Machine Learning Algorithms and Fuzzy Logic

Social networks have become the main infrastructure of today’s daily activities of people during the last decade. In these networks, users interact with each other, share their interests on resources and present their opinions about these resources or spread their information. Since each user has a limited knowledge of other users and most of them are anonymous, the trust factor plays an import...

متن کامل

the stady and analysis of rice agroclimatology in lenjan

the west of esfahan province, iran, is one of the most important agricultural areas throughout the country due to the climate variability and life-giving water of zayanderood river. rice is one of the major and economic crops in this area. the most important climatic elements in agricultural activities which should be considered include temperature, relative humidity, precipitation and wind. so...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Intelligent Information Systems

سال: 2022

ISSN: ['1573-7675', '0925-9902']

DOI: https://doi.org/10.1007/s10844-022-00756-y